

Available online at www.sciencedirect.com

Journal of Power Sources 155 (2006) 325-328

www.elsevier.com/locate/jpowsour

Short communication

Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO₂

Yoshitsugu Kojima*, Ken-ichirou Suzuki, Yasuaki Kawai

Toyota Central R&D Labs., Inc., Nagakute-cho, Aichi-gun, Aichi 480-1192, Japan

Received 28 April 2005; received in revised form 30 April 2005; accepted 30 April 2005 Available online 16 June 2005

Abstract

A stoichiometric amount of hydrogen was generated by catalytic hydrolysis reaction of lithium borohydride solution over nano-sized platinum dispersed on $LiCoO_2$ (Pt- $LiCoO_2$). The catalyst was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS). Analysis showed that the particles size of platinum was about 2 nm and they are dispersed on $LiCoO_2$. The H₂ generation rate was expressed by the zero order rate equation and increased with an increase of the catalyst content. Compared with a mixture of Pt and $LiCoO_2$, catalytic properties of Pt- $LiCoO_2$ was superior. The reason proposed for the higher catalytic activity of Pt- $LiCoO_2$ was the small platinum particle size.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Lithium borohydride; Chemical hydride; Hydrogen generation; Catalyst; Nano-Pt; High-resolution transmission electron microscopy

1. Introduction

A polymer electrolyte fuel cell (PEFC, PEM fuel cell) is the prime power source for FCV. One of the most widely envisioned sources of fuel for FCV is H_2 . Therefore, it is necessary to have a storage tank of H_2 to start the system on demand.

Hydrogen (H₂) can be stored in tanks as compressed or liquefied H₂ or by adsorption on carbon materials [1–6]. It can also be stored in hydrogen storage alloys (hydrogen absorbing alloys) or as a chemical hydride, such as NaBH₄ [7–9], LiBH₄ [10–14] or NaAlH₄ [15], as well as in an organic hydride, such as methylcyclohexane or decalin [16]. Among these methods, attention has recently been given to the hydrolysis of chemical hydrides consisting of protide H⁻ because of the large gravimetric and volumetric H₂ densities [7–12,14]. Chemical hydrides yield H₂ by the reaction with water at room temperature [7–12,14]. LiBH₄ has the highest gravimetric H₂ density of 37 wt.%, and therefore the lowest weight requirement for the target duty [10-14]. However, the hydrolysis reaction of LiBH₄ is slow at ambient temperature [11-14]. In a previous paper, high H₂ pressure accelerated the hydrolysis reaction of LiBH₄. The H₂ yield was only 50%, but still not sufficient [14]. In this paper, 100% of the stoichiometric amount of H₂ was generated when LiBH₄ solutions are hydrolyzed over catalytic nano-sized platinum dispersed on LiCoO₂.

2. Experimental

2.1. Materials

Lithium borohydride (LiBH₄, Wako Pure Chemical Industries, Ltd., Molecular weight: 21.78, density: 0.666 g cm^{-3}) was used for the reaction with water. LiBH₄ is a white crystalline powder. The melting point is 541 K [17] and the rapid evolution of H₂ occurs at 653 K [17]. In a previous paper, we found that the H₂ generation by hydrolysis reaction of NaBH₄ was accelerated by applying metal-metal oxide catalysts such as Pt-TiO₂ and Pt-LiCoO₂ [8]. In this experiment, Pt-LiCoO₂

^{*} Corresponding author. Tel.: +81 561 63 5367; fax: +81 561 63 6137. *E-mail address:* kojima@mosk.tytlabs.co.jp (Y. Kojima).

^{0378-7753/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2005.04.019

was selected because it is on the excellent catalyst for releasing H₂ from the NaBH₄ solution. Pt-LiCoO₂ was synthesized using a conventional impregnation method as described in the previous paper [8]. Dinitrodiammine platinum (II) nitric acid solution [Pt(NO₂)₂(NH₃)₂, 33 ml, Pt content of 50 g l⁻¹, Tanaka Kikinzoku Kogyo K.K., Japan] and lithium cobaltate powder (LiCoO₂, Nippon Chemical Industrial, product name Cellseed 5, average particle size: 5.9 µm) were mixed. The mixture was held at 523 K for 5 h. The dried powder was calcined for 2 h in air at 723 K, thereby coating Pt on the metal oxide. Thus, a catalyst, in which Pt was coated on LiCoO₂, having Pt content of 1.5 wt.% (Pt-LiCoO₂), was obtained. The mixture of Pt particles (Tanaka Kikinzoku Kogyo K.K. Japan, AY-1010, averaged diameter: 1–10 µm) and LiCoO₂ contained 1.5 wt.% of Pt was used as a reference specimen.

2.2. Characterization

The amount of H₂ generated was determined as follows. Each amount of catalysts (3.8-76 mg) and 25 mg of LiBH₄ were packed into an Erlenmeyer flask having a volume of 100 ml, and subsequently 5 g of water was added at room temperature (296 K) by use of a syringe. Then, H₂ generation amounts were determined from the change in level of the volumetric burette in a gas analyzer made by Sibata Scientific Technology, Ltd., Japan. The gas generated was identified as H₂ by a gas chromatograph. Crystalline structure of the catalyst was investigated by a wide angle X-ray diffraction (XRD). The X-ray diffraction pattern was recorded with Cu K α radiation ($\lambda = 0.154$ nm) at 50 kV and 300 mA filtered by a monochrometer using a Rigaku Denki Rint-TTR over a range of diffraction angle (2θ) from 30° to 55° . The apertures of the first, second and third slits were 0.5, 0.5 and 0.15 mm, respectively. The morphology was observed by high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2010FEF) using an acceleration voltage of 200 kV. Specimens for HRTEM observed were sonicated in ethanol for 5 min then loaded onto 200 mesh copper grids. Energy dispersive X-ray spectroscopy (EDS) is a method used to determine the energy spectrum of X-ray radiation. The composition of Pt-LiCoO₂ was measured by EDS.

3. Results and discussion

An XRD pattern of Pt-LiCoO₂ is shown in Fig. 1. Five characteristic peaks of rhombohedral Pt ($2\theta = 37.4^{\circ}$, 38.4° , 39.1° , 45.3° and 49.5°) marked by Miller indices (101), (006), (012), (104) and (015) are observed in the 2θ range from 30° to 55° [18]. The diffraction peaks of Pt [18] are not detected. This suggests the presence of nano-Pt particles.

Fig. 2 shows a HRTEM image of Pt-LiCoO₂. The Pt-LiCoO₂ particles that appear in the HRTEM image indicate the presence of many dark areas. Some of those are marked by arrows in the figure. The size of the dark areas is about 2 nm. EDS analysis is specific to the region marked by plus

Fig. 1. XRD pattern of Pt-LiCoO₂, together with the data of LiCoO₂ (JCPDS file No. 50-653) and Pt (JCPDS file No. 04-0802).

Fig. 2. HRTEM image of Pt-LiCoO2.

signs. The electron beam could be focused on about 5 nm and the EDS analysis cover the area of the support. The EDS results show that the catalyst consists of Co, Cu, Pt and O, as shown in Fig. 3. No other elements are measured by EDS. The copper detected by EDS is caused by the grids. Because of the lightweight, Li is not observed in EDS. The peak intensity of O increases with increasing of that of Co. This

Fig. 3. EDS spectra of Pt-LiCoO2.

indicates that O detected by EDS comes from LiCoO2. Thus, we found that the dark areas in Fig. 2 are nano-Pt particles. The relative intensity of Pt (Intensity of Pt/intensity of Co) decreases from the surface to the inside. Thus, analysis results show that Pt-LiCoO₂ is a nano-composite material in which nano-Pt particles are dispersed on the surface of the LiCoO₂ particles.

The hydrolysis reaction of LiBH₄ is shown as follows [14]

$$LiBH_4 + 4H_2O \rightarrow LiBO_2 \cdot 2H_2O + 4H_2$$
(1)

The H_2 generation capacity of this reaction is 8.6 wt.% when the weight of water is taken into account. In a fuel cell application, if the water produced by the fuel cell is redirected to LiBH₄, then the H₂ generation capacity is 37.0 wt.%. The reaction profiles of LiBH4 for the reaction with water carried out at 296 K are shown in Fig. 4. Without using catalysts, the H₂ yield slowly increases with time and approaches only 10% at 1800 s. The catalytic activity comparison is also shown in Fig. 4. Pt-LiCoO₂ (Pt-LiCoO₂/LiBH₄:15%) gives constant hydrolysis rate up to 87% conversion. We found that 100% of the stoichiometric amount of H₂ was generated in 1200 s as little as 15% of the catalyst. The 15% refer the weight ratio of Pt-LiCoO₂ and LiBH₄. The hydrogen generation rate of Pt-LiCoO₂ is 2.4 times higher than that of the mixture of the Pt particles and LiCoO₂. The H₂ generated by Pt-LiCoO₂ catalyzed LiBH₄ hydrolysis increases linearly with time. Thus, the H₂ generation rate is expressed by the following zero order rate equation.

$$\frac{-1}{4}\frac{\mathrm{d}[\mathrm{LiBH}_4]}{\mathrm{d}t} = \frac{\mathrm{d}[\mathrm{H}_2]}{\mathrm{d}t} = k \tag{2}$$

where k is the rate constant. This indicates that H₂ generation rate is controlled by the catalyst. It is revealed that the H₂ generation rate k using Pt-LiCoO₂ is remarkably improved compared to the mixture of Pt particles and LiCoO2, as shown in Fig. 4. We suggest that the high surface area of the nano-Pt particles in Pt-LiCoO₂ results in the high H₂ generation rate. The H₂ generation rate using Pt-LiCoO₂ is 0.1% conversion s⁻¹ and similar to the rate of NaBH₄ using the same catalyst [8].

25mg/5g 80 Pt-LiCoO2:76mg H₂ yield /% Pt-LiCoO2:38mg 60 Pt-LiCoO2:3.8mg Without catalyst 40 20 100 300 400 200 Time /sec

Fig. 5. Hydrogen production profiles for reaction of LiBH4 with water using different amount of Pt-LiCoO2 catalyst at 296 K.

The H_2 production profiles as a function of time by the different amounts of Pt-LiCoO₂ are plotted in Fig. 5. Pt-LiCoO₂ amount accelerates the H₂ generation rate (Pt-LiCoO₂: 3.8–76 mg, H₂ generation rate: 0.1-0.7% conversion s⁻¹). The relation between k and the catalysts content C (mg) is linear as shown in

$$k = 0.0436 + 0.00917C \tag{3}$$

This also indicates that the hydrolysis reaction involves the surface reaction of LiBH₄ adsorbed on the catalyst. Above H₂ yield of 90%, diffusion controlled first order kinetics may dominate the reaction at the very low LiBH₄ concentration. The catalysts were not consumed during the hydrolysis and are reusable.

A 10 kW-scale H₂ generator using a NaBH₄ solution and Pt-LiCoO₂ showed during 30,000 s no decrease of the H₂ generation rate [19]. It is suggested that Pt-LiCoO₂ has the long-term stability of the nano-disperse catalyst particles. As the generation of H₂ is irreversible on board, our chemical hydride system may be effective as a hydrogen storage system for fuel cell uninterrupted power supply (FCUPS) or for any emergency power source. As stated above, the catalytic properties of nano-sized Pt dispersed on LiCoO₂ (Pt-LiCoO₂) are superior to that of the mixture of Pt and LiCoO₂.

4. Conclusions

Hydrogen generation using lithium borohydride solution was accelerated some factor by applying Pt-LiCoO2 catalyst. HRTEM, EDS and XRD measurements revealed that Pt-LiCoO₂ was a nano-composite material where nano-Pt particles of about 2 nm were dispersed on LiCoO₂. It was found that 100% of the stoichiometric amount of H₂ was generated by the Pt-LiCoO₂ catalyst.

Acknowledgements

The authors are greatly indebted to N. Suzuki, T. Noritake, Dr. T. Hioki, Dr. G.J. Shafer of the Toyota Central R&D Labs.,

Inc., Dr. H. Nakanishi of Toyota Motor Corporation for their help and discussion.

References

- [1] L. Schlapbach, A. Züttel, Nature 414 (2001) 353.
- [2] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386 (1997) 377.
- [3] R. Chahine, T.K. Bose, Int. J. Hydrogen Energy 19 (1994) 161.
- [4] Y. Kojima, N. Suzuki, Appl. Phys. Lett. 84 (2004) 4113.
- [5] Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74 (1999) 2307.
- [6] C.C. Ahn, Y. Ye, B.V. Ratnakumar, C. Witham, R.C. Bowman Jr., B. Fultz, Appl. Phys. Lett. 73 (1998) 3378.
- [7] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, M. Binder, J. Power Sources 85 (2000) 186.
- [8] Y. Kojima, K. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, H. Hayashi, Int. J. Hydrogen Energy 27 (2002) 1029.
- [9] Z.P. Li, B.H. Liu, K. Arai, N. Morigazaki, S. Suda, Int. J. Hydrogen energy 356–357 (2003) 469.

- [10] P.M. Dunn, C.J. Egan, W.L. Harbison, G.K. Pitcher, Proceedings of the 26th Interso. Energy Conversion Eng. Conf. (3), 1991, p. 527.
- [11] V.C.Y. Kong, F.R. Foulkes, D.W. Kirk, J.T. Hinatsu, Int. J. Hydrogen Energy 24 (1999) 665.
- [12] R. Aiello, J.H. Sharp, M.A. Matthews, Int. J. Hydrogen Energy 24 (1999) 1123.
- [13] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, J. Power Sources 118 (2003) 1.
- [14] Y. Kojima, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto, Int. J. Hydrogen Energy 29 (2004) 1213.
- [15] B. Bogdanović, M. Schwickardi, J. Alloys Compd. 253–254 (1997) 1.
- [16] E. Newson, T. Haueter, P. Hottinger, F. Von Roth, G.W.H. Scherer, Th.H. Schucan, Int. J. Hydrogen Energy 23 (1998) 905.
- [17] B.D. James, M.G.H. Wallbridge, Metal tetrahydroborates, Progr. Inorg. Chem. 11 (1970) 99.
- [18] "Powder Diffraction File," Database Manager T.M. Kahmer, Editor-in-Chief W.F. McClune, Editor of Calculated Patterns S. N. Kabekkodu, Staff Scientist H. E. Clark, International Center for Diffraction Data (JCPDS), Pennsylvania USA, 2001.
- [19] Y. Kojima, K. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbra, H. Nakanishi, S. Matsumoto, J. Power Sources 125 (2004) 22.